Knowledge-Leverage-Based TSK Fuzzy System Modeling
نویسندگان
چکیده
منابع مشابه
A Parallel Genetic Algorithm-Based TSK-Fuzzy System for Dynamic Car-Following Modeling
This paper presents the application of Parallel Genetic Algorithm (PGA)-based Takagi Sugeno Kang (TSK)-Fuzzy approach for dynamic car-following modeling in the traffic simulation software. It differs from the usual car-following model significantly as the proposed model provides a more dynamic car movement and realistic headway by considering the driver progressive level factor. These two advan...
متن کاملRobust TSK Fuzzy Modeling with Proper Clustering Structure
Traditional approaches for modeling TSK fuzzy rules are trying to adjust the parameters in models, and not considering the training data distribution. Hence it will result in an improper clustering structure, especially, when outliers exist. In this paper, a clustering algorithm termed as Robust Proper Structure Fuzzy Regression Algorithm (RPSFR) is proposed to define fuzzy subspaces in a fuzzy...
متن کاملIdentifying Rule-Based TSK Fuzzy Models
ABSTRACT: This article presents a rule-based fuzzy model for the identification of nonlinear MISO (multiple input, single output) systems. The presented method of fuzzy modeling consists of two parts: (1) structure modeling, i.e., the determination of the number of rules and input variables involved respectively, and (2) parameter optimization, i.e., the optimization of the location and form of...
متن کاملSimulation Modeling of TSK Fuzzy Systems for Model Continuity
This paper presents an approach to formally model Takagi–Sugeno– Kang (TSK) fuzzy systems without the use of any external components. In order to keep the model continuity, the formal simulation model for a TSK fuzzy system is comprised of three types of reusable sub-models involving primitive operations. Thus, the model can be executed even on limited computational platforms, such as embedded ...
متن کاملRobust TSK fuzzy modeling for function approximation with outliers
The Takagi–Sugeno–Kang (TSK) type of fuzzy models has attracted a great attention of the fuzzy modeling community due to their good performance in various applications. Various approaches for modeling TSK fuzzy rules have been proposed in the literature. Most of them define their fuzzy subspaces based on the idea of training data being close enough instead of having similar functions. Besides, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2013
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2013.2253617